|
EI2GYB > ASTRO 31.08.21 10:44l 107 Lines 5367 Bytes #999 (0) @ WW
BID : 13931_EI2GYB
Read: GUEST
Subj: The give and take of mega-flares from stars
Path: IW8PGT<IZ3LSV<DB0ERF<DK0WUE<PE1RRR<KA1VSC<LU9DCE<EA2RCF<EA5URD
Sent: 210831/0940Z @:EA5URD.EAMU.ESP.EU #:37439 XFBB7.04h Bid:13931_EI2GYB
R:210831/0940Z @:ED1ZAC.EAC.ESP.EU #:29212 [EANET1G.06] $:13931_EI2GYB
R:210831/0939Z @:GB7CIP.#32.GBR.EURO #:45399 [Caterham Surrey GBR]
R:210831/0939Z 13931@EI2GYB.DGL.IRL.EURO BPQ6.0.22
_ _ _ _
/ \ ___| |_ _ __ ___ | \ | | _____ _____
/ _ \ / __| __| '__/ _ \ | \| |/ _ \ \ /\ / / __|
/ ___ \\__ \ |_| | | (_) | | |\ | __/\ V V /\__ \
/_/ \_\___/\__|_| \___/ |_| \_|\___| \_/\_/ |___/
The give and take of mega-flares from stars
The long relationships between stars and the planets around them -
including the Sun and the Earth - may be even more complex than
previously thought.
This is one conclusion of a new study involving thousands of stars
using NASA's Chandra X-ray Observatory.
The long relationships between stars and the planets around them --
including the Sun and the Earth -- may be even more complex than
previously thought.
This is one conclusion of a new study involving thousands of stars
using NASA's Chandra X-ray Observatory.
By conducting the largest survey ever of star-forming regions in
X-rays, a team of researchers has helped outline the link between
very powerful flares, or outbursts, from youthful stars, and the impact
they could have on planets in orbit.
"Our work tells us how the Sun may have behaved and affected the young
Earth billions of years ago," said Kostantin Getman of Pennsylvania State
University in University Park, Pennsylvania who led the study.
"In some ways, this is our ultimate origin story: how the Earth and Solar
System came to be."
The scientists examined Chandra's X-ray data of more than 24,000 stars
in 40 different regions where stars are forming.
They captured over a thousand stars that gave off flares that are
vastly more energetic than the most powerful flare ever observed by
modern astronomers on the Sun, the "Solar Carrington Event" in 1859.
"Super" flares are at least one hundred thousand times more energetic
than the Carrington Event and "mega" flares up to 10 million times more energetic.
These powerful flares observed by Chandra in this work occur in all of the
star-forming regions and among young stars of all different masses,
including those similar to the Sun.
They are also seen at all different stages in the evolution of young
stars, ranging from early stages when the star is heavily embedded in
dust and gas and surrounded by a large planet-forming disk, to later
stages when planets would have formed and the disks are gone.
The stars in the study have ages estimated to be less than 5 million
years, compared to the Sun's age of 4.5 billion years.
The team found several super-flares occur per week for each young star,
averaged over the whole sample, and about two mega-flares every year.
"We want to know what kinds of impact -- good and bad -- these flares have
on the early lives of planets," said co-author Eric Feigelson, also of Penn State. "Flares this powerful can have major implications."
Over the past two decades, scientists have argued that these giant flares
can help "give" planets to still-forming stars by driving gas away from
disks of material that surround them.
This can trigger the formation of pebbles and other small rocky material
that is a crucial step for planets to form.
On the other hand, these flares may "take away" from planets that have
already formed by blasting any atmospheres with powerful radiation,
possibly resulting in their complete evaporation and destruction in less
than 5 million years.
The researchers also performed detailed modeling of 55 bright super- and
mega-flares and found that most of them resemble long-lasting flares seen
on the Sun that produce "coronal mass ejections," powerful ejections of
charged particles that can damage planetary atmospheres.
The Solar Carrington Event involved such an ejection.
This work is also important for understanding the flares themselves.
The team found that the properties of the flares, such as their brightness
and frequency, are the same for young stars with and without planet-forming disks. This implies that the flares are likely similar to those seen on the Sun, with loops of magnetic field having both footprints on the surface of the star, rather than one anchored to the disk and one to the star.
"We've found that these giant flares are like ones on the Sun but are just
greatly magnified in energy and frequency, and the size of their magnetic
loops," said co-author Gordon Garmire from the Huntingdon Institute for
X-ray Astronomy in Huntingdon, Pennsylvania."
Understanding these stellar outbursts may help us understand the most
powerful flares and coronal mass ejections from the Sun."
Video: https://www.youtube.com/watch?v=ydLScMtHD4I
____ __ ____ ___ _ _ ____ ____ ____ ____
( __)( )(___ \ / __)( \/ )( _ \ ( _ \( _ \/ ___)
) _) )( / __/( (_ \ ) / ) _ ( ) _ ( ) _ (\___ \
(____)(__)(____) \___/(__/ (____/ (____/(____/(____/
PART OF THE DONEGAL PACKET RADIO NETWORK
Packet: EI2GYB@EI2GYB.DGL.IRL.EURO
Email: EI2GYB@GMAIL.COM
+------------------------------------------------------------------------------+
Read previous mail | Read next mail
| |