|
KF5JRV > TECH 08.04.16 12:45l 38 Lines 2673 Bytes #999 (0) @ WW
BID : 1195_KF5JRV
Read: GUEST
Subj: Atomic Cesium Clock
Path: IW8PGT<IZ3LSV<F1OYP<F4DUR<CX2SA<GB7CIP<N0KFQ<KF5JRV
Sent: 160408/1138Z 1195@KF5JRV.#NWAR.AR.USA.NA BPQK1.4.65
The Time and Frequency Division, part of the NIST Physical Measurement Laboratory, maintains
the standard for frequency and time interval for the United States, provides official time to the
United States, and carries out a broad program of research and service activities in time and
frequency metrology.
NIST-F1 and NIST-F2 are called fountain clocks because the cesium atoms are tossed in the air
and fall back down inside a vertical tube during a key routine repeated thousands of times an hour.
A gas of cesium atoms is introduced into the clock's vacuum chamber and six infrared laser
beams gently push about 10 million atoms into a ball. In this process, the lasers cool the atoms
to temperatures near absolute zero and slow them down significantly, to enable precise
measurements of their natural vibrations.
Two vertical laser beams produced by the six lasers are used to gently toss the atom balls upward
through the flight chamber (the "fountain" action), and then all of the lasers are turned off. This little
push is just enough to loft the ball about 1.3 meters high through a microwave-filled cavity. Gravity
brings the ball back down through the microwave cavity.
During the trip, some atomic states of the atoms are altered, while others remain the same, as they
interact with a microwave signal from a maser. When the trip is finished, another laser is pointed at
the atoms. Some atoms—those whose energy states were altered by the microwave signal—emit
light, or fluorescence. The resulting photons, the tiny packets of light emitted, are measured by a detector.
This process is repeated while the microwave signal in the cavity is tuned to different frequencies.
Eventually, a microwave frequency is found that alters the states of most of the cesium atoms. This
frequency is the natural resonance frequency of the cesium atom (9,192,631,770 Hz), or the frequency
used to define the second.
NIST-F2 was designed using lessons learned from NIST-F1. The key advance is that the vertical flight
tube is now chilled inside a container of liquid nitrogen, at minus 193 ºC, or minus 316 ºF. This cycled
cooling dramatically lowers the background radiation and thus reduces some of the very small
measurement errors that must be corrected in NIST-F1.
NIST-F2 also has other novel features. Some critical components shrink by 1 centimeter in length each
time the clock is cycled to very cold temperatures, so the clock design allows for shrinking and
expanding. In addition, the system of six laser beams used to cool the cesium atoms is arranged in
a new way. Additional design enhancements to NIST-F2 are planned for the future.
Read previous mail | Read next mail
| |