|
G8MNY > TECH 26.06.15 10:33l 392 Lines 21389 Bytes #999 (0) @ WW
BID : 34581_GB7CIP
Read: GUEST
Subj: T500M 12V 500W HF Linear
Path: IW8PGT<IV3ONZ<IZ3LSV<ED1ZAC<CX2SA<GB7CIP
Sent: 150626/0633Z @:GB7CIP.#32.GBR.EURO #:34581 [Caterham Surrey GBR]
From: G8MNY@GB7CIP.#32.GBR.EURO
To : TECH@WW
By G8MNY (Updated Jan 14)
(8 Bit ASCII graphics use code page 437 or 850, Terminal Font)
I bought an old (1977) large commercial Trans World Electronics Inc, 12V HF Amp
for "MEDIUM POWER Air/Ship/Army" use. at a local junk sale.
///////////////////////³ 2-30MHz, 4x 150W push pull amps in parallel.
/////////////////////// ³ > 10dB gain, 70W max drive.
/////////////////////// /³ IMD 3rd Order -32dB @-500W, -36dB @ 400W.
/////////////////////// / ³ PA harmonics to better than -43dB.
/////////////////////// / ³ 13.6V @ 75 Amps needed for full 600W output!
/////////////////////// / / 1kW DC input, Infinite SWR rated, <2:1 recom.
³³³³³³³³³³³³³³³³³³³³³³³³ / / 15A charger & car battery will power it (SSB).
ÚÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ¿ / Thermal 70øC heatsink shutdown.
³T500M __ ____ ³ / Over current 75A trip (high SWR & over drive).
³ o<ð [__] [____] ³/ Manual & Remote operation (On & Band select).
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Weight 8kg.
It was cheap as it had a fault & it came with the handbook, so I expected a
problems. On examination it basically worked OK "no blown amps", but it had a
faulty band switch. That was just a "light contact" on the single wafer switch,
causing non operation, or no "band filter relay selected" (no RF output path!)
& easily fixed once the switch was stripped down.
S C H E M A T I C
Rx & low power through path
DriveÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿Ant
RIG____/ ÚÄÄÄÄÄ¿50êÚÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄ¿50ê ÚÄÄÄÄÄÄ¿ \___ANT
|ÀÄÄÄ´AttenÃÄÄÄ´Splitter³ ³CombinerÃÄÄÄÄÂÄ/Ä´FilterÃÄ\ÄÂÙ|
| 70WÀÄÄÄÄÄÙ30WÀÄÂÄÂÄÂÄÂÙ ÚÄÄÄ¿ ÀÂÄÂÄÂÄÂÄÙ600W³ | ÀÄÄÄÄÄÄÙ | ³ |ptt
| Max ³ ³ ³ ÀÄÄ´PA1ÃÄÄÙ ³ ³ ³ ³ ÚÄÄÄÄÄÄ¿ ³
| ³ ³ ³200êÀÄÄÄÙ200ê³ ³ ³ ÃÄ/Ä´FilterÃÄ\Ä´
| ³ ³ ³ ÚÄÄÄ¿ ³ ³ ³ ³ | ÀÄÄÄÄÄÄÙ | ³
PTT>ÄÄÄÙ Drive ÚÄÄÄÄ¿ ³ ³ ÀÄÄÄÄ´PA2ÃÄÄÄÄÙ ³ ³ ³ ÚÄÄÄÄÄÄ¿ ³
/Ä´BiasÃÄ> ³ ³ 200êÀÄÄÄÙ200ê ³ ³ ÃÄ/Ä´FilterÃÄ\Ä´
³ ÀÄÄÄÄÙ ³ ³ ÚÄÄÄ¿ ³ ³ ³ | ÀÄÄÄÄÄÄÙ | ³
Trip ³ ³ ÀÄÄÄÄÄÄ´PA3ÃÄÄÄÄÄÄÙ ³ ³ ÚÄÄÄÄÄÄ¿ ³
ÚÄÄ¿ DC³ ³ 200êÀÄÄÄÙ200ê ³ ÃÄ/Ä´FilterÃÄ\Ä´
12V___³/_³_/ÄÁÄ> ³ ÚÄÄÄ¿ ³ ³ | ÀÄÄÄÄÄÄÙ | ³
ÀÄÄÙ | ÀÄÄÄÄÄÄÄÄ´PA4ÃÄÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄ¿ ³
| 200êÀÄÄÄÙ200ê ÀÄ/Ä´FilterÃÄ\ÄÙ
Band Switch| | ÀÄÄÄÄÄÄÙ |
or Remote> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L A Y O U T (Bottom cover off)
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ Äij
Þ³~~~~~ÄÄ Pot PushPull | ÚÄÄÄÄÄ¿ ÚÄÄÄÄÄ¿ ÃÄ¿
ݳ100 ³ Bias =()=´±±±±³Output ³Relay³ >15MHz Filter³Relay³ ÃÄÙRig
ݳAmp ³Circuit [±] PA1 Transformers ~~~~~ ~~~~~ ³SO239
Þ³Meter³ [±] =()=´±±±±³ | ÚÄÄÄÄÄ¿ ÚÄÄÄÄÄ¿ ³
³-----~~5R [±]Input ³Relay³8-15MHz Filter³Relay³ ³ÜÛ 13.6V
³ [±]Spliter=()=´±±±±³ | ~~~~~ ~~~~~ /³+ß DC 75A
³ÄÄÄÄÄÄ. [±] [±] PA2 ³ÚÄÄÄÄ¿ ÚÄÄÄÄÄ¿ ÚÄÄÄÄĿݳ-Ü Wing
³75A DC ÃÄÄ[±] [±] =()=´±±±±³³ DC ³ ³Relay³ 5-8MHz Filter³Relay³Û³ßÛ Nuts
Þ³TRIP & Ã()shuntÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜRelay³ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÛ³
/³ON/OFF ³__Üßßßß =()=´±±±±³ÀÄÄÄÄÙ ÚÄÄÄÄÄ¿ ÚÄÄÄÄÄ¿ ³12 Way
ß³======' PushPull[±] PA3 ³ | ³Relay³ 3-5MHz Filter³Relay³ ³Jones
³Drive³ Driver[±] =()=´±±±±³ [±±]Output~~~ ~~~~~ ³Socket
³Relay³ Transformers [±±]CombinerÄ¿ ÚÄÄÄÄÄ¿ ³
³~~~~~ =()=´±±±±³ [±±]| ³Relay³ 2-3MHz Filter³Relay³ ³
³| ThermSw [±] PA4 ³ [±±] ~~~~~ _____ ³SO239
Û³|Band [±] =()=´±±±±³ | ³ Ant ³ ÃÄ¿Ant
³|Switch :RF lead: ³Relay³ ÃÄÙ
³ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ ÄÄ~~Äij
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
Protection is from 75A fast magnetic trip for bad SWR & over drive, it has an
external calibrated shunt, & the 100A ammeter uses 10cm of the thick DC lead as
it's calibrated shunt.
The bias is a simple 2 transistor thermally tracked circuit provides up to 2.2A
of current @ 0.69V for the 4 class AB push pull amps. Excluding bias current
the total PA quiescent current should be 1.6-2A, (it does give the best two
tone linearity results at around that level. See 5/)
P A R A L L E L A M P S
The 4 identical push pull Amps use pairs of PT9847 100W HF transistors with 5:1
ferrite rings stacked on 2x 1/2 turn brass tubes transformers, small ones for
the drives & much larger ones for the outputs. A large amount of RF NFB is (for
good linearity) provided by 47ê 5W & u1 collector to base on each transistor.
Input & Output Transformers use...
NFBÚÄ47Ä¿ 1:5 Input 3 rings/side, Output 5 rings/side
200ê 5:1 u1=== ÃÄÂÄÄÄÄÄ¿ ______ Collector ÄÄ´±± ±± ±± ±± ±±Ã+PCB
ÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÁÄÄ´< ³ ³|( 200ê or Base ~~~~~~~~~~~~~~tube
5W )|³ Á ³1n2 _)|( 5 Turn /////______________ \\\\\
5 Turn)|(___ === ³ )|( Output 5 |||||³±± ±± ±± ±± ±±³ |||||
Input )|( ³ u1ÚÄ47Ä¿ ³ ³ ³|( 150W turns||||| Ã+|||||
)|³ ³ === ÃÄÁÄÄÄ)ÄÙ|( |||||³±± ±± ±± ±± ±±³ |||||
)|ÀÄÄÄ)ÄÄÄÁÄÄ´< ³ Á \\\\\~~~~~~~~~~~~~~~/////
Á bias´ ³e ÃÄÄÄÂÄÄÄÄ+12V tube______________
0.6V @0.7A ===2u2 ³ u1=== ===1mF @18A Collector ÄÄ´±± ±± ±± ±± ±±Ã+PCB
ÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄ or Base Ferrite ring stack
The inputs & outputs are wired up from the drive splitter & to the output
combiner with staggered lead lengths, so all the RF signals ends up exactly in
phase.
ÚÄÄÄÄÄÄ>PA1>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ Splitter & combiner both have out of
(|_100R_ _100R_|) balance dump 100R to soak up any amp
_(| 1W ³200ê ³ 5W |)_ differences for best stability &
³ (|_100R_³AMPS ³_100R_|) ³ linearaity. Ferrite ring & tube
³ (| 1W ³ ³ 5W |) ³ construction like transformers.
50ê ³ ÀÄÄÄÄÄÄÄ)>PA2>ÄÄÄÄÄ)ÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄÄÄÄÂÄÄÄÄÂÄÄÄÄÄÄÄÄÄ¿
Drive>´SPLITTER ³ ³ COMBINERÃ>50ê 100 100 100 100
30W ³ ÚÄÄÄÄÄÄÄ)ÄÄ>PA3>ÄÄÄ)ÄÄÄÄÄÄÄ¿ ³600W ³ ___ ___ ³ ³ ___ ___ ³
³ (|_100R_³ ³_100R_|) ³ _³|___X___|³_ _³|___X___|³_
³_(| 1W ³ 200ê³ 5W |)_³ ±³|³± ±³|³± ±³|³± ±³|³±
(|_100R_³ AMPS³_100R_|) ±³|³± ±³|³± ±³|³± ±³|³±
(| 1W 5W |) ~~|~~~~~~~|~~~~~~|~~~~~~~|~~\Drive
ÀÄÄÄÄÄÄÄÄÄÄÄÄ>PA4>ÄÄÄÄÄÄÄÄÄÙ PA1 PA2 PA3 PA4 Output
F I L T E R S
There are 10 relays that switch in 1 of the 5 QRO 2 section PI band low pass
filters, & reduce the quite high PA harmonics to > -43dB.
N.B. there is no PA RF output path without a band pair of relays operated!
______Relay Relay______ Band C1&C3 C2
From /ÄÄÂÄÄ())))ÄÄÂÄÄ())))ÄÄÂÄÄ\ To 2-3MHz 390+430p 750+680+270p
Combiner³ ³ L ³ L ³ ³ Aerial 3-5MHz 390+120p 750+270p
³ === === === ³ Relay 5-8MHz 270+47p 430+200p
³ ³C1 ³C2 C3³ ³ 8-15MHz 82+82p 200+150p
ÄÄÄÄÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÁÄÄÁÄÄÄÄ 15-30MHz 82p 56+120p
The Cs are all 2-3kV RF types. The Ls are wound 2cm ferrite rings or air for
the highest range. Using several Cs in parrellel not only gets the odd filter
value, but also gives greater current handeling & reduced lead inductance.
H E A T S I N K
At 25øC ambient in free air, the very large heatsink does not need a fan on 50%
duty SSB, despite only the front part getting quite hot. But carrier modes are
to be avoided (input attenuator overheats on lower bands!) or the temperature
might rise above the thermal 70øC auto resetting cut off switch.
M O D I F I C A T I O N S
1/ LED INDICATORS, STANDBY CURRENT & RELAY SEQUENCING.
Current was quite high in Rx mode, I found all the relays would operate OK
down to 7V. So I added series Rs to reduce the currents by 30% for the slow to
operate ones, & I used the added R voltage drop to light 2 status LEDs too...
ÚAmmeter¿ ON Drive
+12V>ÄTRIPÁÄShuntÄÁÂÄÄÄÄÄ\ÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄ\ÄÄ>Bias
75A ÚÄÄÄÄÁÄÄÄÄ¿ ÚÄÄÁÄÄÄ¿ === PA ÚÄÄÁÄÄ¿ÚÄÄÁÄÄ¿ Regulator
³ DC ON ³ ³Filter³ _³_3000uF ³Drive³³ Ant ³
³Contactor³ ³Relays³ /// ³Relay³³Relay³
ÀÄÄÄÄÂÄÄÄÄÙ ÀÄÂÂÂÂÂÙ ÀÄÄÂÄÄÙÀÄÄÂÄÄÙ
ÚÄ100Ä´ ³³³³³ Red ÚÄ100Ä´ ³
Green _³_ 1W oooooo Tx _³_ ³ ³
ON <=\_/ 75R /³\ LED<=\_/ 33R ³
LED ÀÄÄÄÂÂÅ¿ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÙ ³
oooooo e\³ ³
/³\ PNP ÃÄððÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄ<PTT
³ 2N2905/³ Fbead 80mA
_³_ _³_
/// /// Relay back EMF diodes & RF caps not shown
Added components mounted on or near the band switch.
Input & output filter relays (not in Rx path) are NOW only operated when the
PTT is active, from a PNP emitter follower. The drive relay that also puts on
the PA Bias, is last to operate wih a series LED too is also buffered. But the
Ant relay must be faster, so it is left directly on the PTT line! These
modification save about 300mA on standby & helps keeps the filter relay
contacts clean! It also reduces the PTT current to 80mA (limited PTT current
on my exciter's reed relay). And the slight voltage differences is all that is
needed to ensure the relays all operate in the right sequence order, so no
QRO RF contact splats.
2/ RIPPLE SMOOTHIMG
Only 3x 1000uF was fitted on my PA, the diagram showed 3x 2200uF, & having a
large bag of similar 1000uF caps, I added 7 more symmetrically stacked up
around the 4 amplifiers to give 10,000uF in all much more than that might weld
up the DC contactor! Each of these Caps can give a few amps at audio, reducing
some of the battery lead AF ripple current.
3/ DC LOSSES
This QRO amplifier has very high currents, a drop of 1V = 100W less peak
power! DC lead losses & the use of unsoldered crimp connectors all adds up.
So with amplifier into a dummy load, I use a DVM on 2V range from battery -ve
& +ve to highlight where the voltage was being lost... drops on the leads,
contactor, & tags. (If RF gets up your meter use 1k R in series as RF stopper
at probe end)
Metal case connection of the -ve terminal had not been used, it could reduce
the internal earth wire loss, it was just bolted on painted panels. So I
ground off the paint around the earth post, greased the bare aluminium to keep
the air away, & bolted it up tightly. I did the same to rear panel to heatsink
screws with lock washers etc.
External DC cables, I use "starting grade cables" see "battery leads" below,
4/ DC FUSE
There was no low current fuse, so I soldered in a 3A one in the small wiring
feed (to the band switch) to reduce the risk of an internal fire!
5/ BIAS
R4 turns on Q2, when Q2 emmiter > 0.6V, Q1 turns on reducing Q2 base drive.
Value of R3 is used to see the exact bias voltage, R4 & supply voltage also
affect the bias to slightly. R5 limits the max current, D2 is a safety
feature. Q1 & D2 are thermally connected to the PA on the same heatsink.
PTT Switched
+12V ÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ R5I This circuit was slightly
R4 Added 5R unstable when scoping
270 47n 10W Scope for R5 (5R) so I added a small
³ Ú´Ã---³ <--1MHz oscillation! capacitor base to collector
³ | ³/c on the large MPN to stop it.
ÃÄÄÄÄÄÂÄÄÄÄÄ´ TIP33A
³ C6 === Q2 ³\e NPN +690mV @ 2.2A
³ 2u2_³_ ÃÄÄÄÄÂÄÄÄÂÄ> via RFC to
³ /// ³ ³ ³ Amp input
NPN c\³ ³ ³ ³ transformers
TIP29 ÃÄÄÄÄÄÄÄÄÄÄÄ´ ³ ³
e/³ Q1 _³_ +³ 2R2
PA BIAS ³ \_/ === ³ Components were not the
QuescentÀ>5R D2 ³ C7³ ³ same as original diagram!
Set 1-2A R3 ³ 2u2³ ³
ÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÁÄÄÄÁÄÄ
6/ ALC
There is no ALC system on this AMP, & I am used to old Valve amp with a power
ALC control. With PA ALC, the driver power is automatically set to the wanted
level, & with the PA turned off your back to full bare foot power. So I
designed this ALC circuit for this PA...
+12V Tx>ÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
R4 5R ³
270 PA 10W ³
ÀÄ>Bias<ÄÁÄÄ270ÄÄ¿ 15K
Circuit ³ 2n2 ³
ÃÄĴÿ ³ Front panel
PNP e\³ ³ 10K 50W-600W
2N3703 ÃÄÄÁÄ>POWER ALC Control
on POT /³ POT
ÚÄÄÄÄÄ´ _³_
4K7 |³| ///
³ ³Fbead Mounted on 12 way JONES plug
Input -ve³ ³ Fbeed
RF on >Ä1kÄÄ´<ÃÄ´<ÃÄ´ ÀÄÄÄÄÄÄÄÄÄÄÄÄððij<ÃÄÂÄÄÄÄÂÄÄÄ>ALC to rig
Drive 1N4148 ³ long wire 1N4148³ 100 0V to -10V
Atten === ³ ³ -
2n2³ 4K7 === 4u7
_³_ _³_ _³_+20V
/// /// ///
The -ve supply for the ALC is derived from the RF on the attenuator after the
DRIVE relay. The -ve after the 4K7 it is normally clamped to +ve by the PNP.
But when the PA bias current (limited to 2.2A by 10W 5R) reaching the 8 PA
bases, gives a voltage higher than that set on POWER POT & the clamping stops
letting the -ve through. The series diode & 4K7 load mounted on the Jones plug
ensures only -ve voltages are given to the exciter to reduce power drive. The
4u7 & 100R give a sensiable ALC time constant action.
MY CLEVER ALC DESIGN!
My ALC works very well compaired with manually keeping the drive power always
low enough at all times so the PA never clips. By using bias current demand,
it is quite effective at keeping the PA operating in it's linear region by
reducing the driver power. This is because the large amount of NFB used around
each PA in this commecial PA, that increases the PA's drive power as the amp
gain falls off at full power. The sudden increase in bias current occures
before the PA actually clips. So a usefull & accurate maximum drive threshold
point that caters for any SWR, supply voltage, or Rig power setting etc!
7/ INPUT SWR
The input frequency compensating attenuator circuit was not as the diagram &
the SWR was not all that good, dispite all components testing out OK.
SWR Original Input Match SWR Improved Input Match @ 50W
1.7´ .ú'ú. 1.7´
1.5´''''''''''' 'ú.. 1.5´
1.3´ ''''úúúúú 1.3´ ..ú''ú. ..ú'
1.1´ 1.1´'''''''''' ''''''''
ÀÂÄÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄ ÀÂÄÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄ
1.8 3.5 5 7 10 14 18 21 24 28MHz 1.8 3.5 5 7 10 14 18 21 24 28MHz
L1 39p L1 39p
>ÄÄ())ÄÄÄÂÄÄÄÂÄÄÄÄÂÄ´ÃÄÄÂÄ>Drive >Ä())ÄÂÄÄÄÄÄÄÂÄÄÂÄÄÄÄÂÄ´ÃÄÄÂÄ>Drive
L2( === ÃÄ220Ä´ Splitter ³ L2( === ÃÄ200Ä´ Splitter
( ³56p ÃÄ220Ä´ === ( ³56p ÃÄ200Ä´
ÚÄÄÄÂÁÄÄÂÁÄÄ¿ ÀÄ220Ä´ 100p³ ÚÄÄÁÂÄÁÄ¿ ÃÄ200Ä´
200 200 200 200 220 ³ 220 220 220 ÀÄ200ÄÙ
_³_ _³_ _³_ _³_ _³_ _³_ _³_ _³_ _³_
Actual Circuit New Circuit
There was a bump @ 10MHz & that is from the drive splitter load. L2 & 56pF
disconnects the added load, as the 39pF bypasses the series attenuator Rs on
the higher frequencies, to flatten the amp gain. The original diagram did not
have 220R to ground, but had 20pF to ground @ the L1/2 junction. I found
making this a 100pF (Tx grade) was better on 10m band & changing the load Rs
around gave a better lower band input match.
Flat gain is less important than driver rig linearity, due to poor load. The
input SWR will change with drive level (higher Z at more power), as the RF NFB
level reduces, correcting each amplifier gain, as each amplifier works harder.
T E S T I N G
At a club meeting, 2 of these amplifiers (modified & unmodified) were tested
with 2 tone linearity test & with a spectrum analyser for harmonics. Both amps
performed well to the 600W clipping level. But even brief full carrier testing
on lower bands did provide smoke from the underrated input attenuator!
The 2 tone test showed very good linearity to 400W PEP, so I think the quoted
IMD looks right.
The harmonics tests on a spectrum analyser showed the need to have the "right"
low pass filter selected, as these un-tuned broadband amps are quite harmonic
rich otherwise!
dB Topbands with dB Topband with
0_³ f1 15-30MHz Filter 0_³ f1 2-3MHz Filter
-10_³ ³ -10_³ ³
-20_³ ³ f3 -20_³ ³
-30_³ ³ f2 ³ -30_³ ³
-40_³ ³ ³ ³ f4 f5 -40_³ ³ f2
-50_³ ³ ³ ³ ³ ³ f6 -50_³ ³ ³
-60_³ ³ ³ ³ ³ ³ ³ f7 -60_³ ³ ³ f3
ÀÄÄÁÄÄÁÄÄÁÄÄÁÄÄÁÄÄÁÄÄÁÄ ÀÄÄÁÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÄ
On Topband the 2-3MHz LPF is not really that good for the 2nd harmonic! Higher
bands fared better with filter performance. Of course no problem at all after a
good ATU.
On actual testing into aerial via a high Q QRO ATU, I found it was possable to
get slight PA parasitic oscillation (of the RF envelope) at very high power. It
never did this into my dummy load or an actual aerial on Spectrum Analyser! But
with the final tweak to the input attenuator it tested OK across all bands,
with ATU tuning over a range of SWRs. So sudden high SWR in a tuner may
indicate Tx "parasitic" as well as aerial "arcing" failure!
H A Z A R D S
Current Loops:
Although 12V is fairly safe (compared to 230V or 3kV), with high currents
anything metal is a hazard! This includes the PL259 plug & mains earth wiring!
I put heat shrink sleeving on 259 plug rig lead near the +12V terminal. Care
must be taken to ensure the "75A" does not flow around unsuitable leads in
parallel eg. Mains PSU earths!
Battery leads:
I use short "starter gauge" cables, with soldered on copper tabs/lugs, made
from thin Copper sheet 0.5mm, wound on a 8mm drill 1.5 turns. Then flattern one
end, solder to cable (on cooker).
__________ heat shrink
Drilled ___ _____________
Hole ____/ ³~STARTER CABLE
~~~~ÄÄÄÄÙ~ÄÄÄÄÄÄÄÄÄÄÄÄÄ
~~~~~~~~~~~~
Clean up & apply heat shrink sleeve or tape. Drill hole for PA & battery
connections. Mark up + & - with coloured tape. Apply water repellent grease to
tabs, bolt tread, washers etc.
Lead Acid Batteries:
Other than high current & fire hazard of melted leads, batteries have Sulphuric
Acid that always seems to get out & damage cloths etc, you can replace clothes,
but eyes are something else! Take care!
H2 Anti Explosion Tip:
Always "blow" at the battery, before making/unmaking connections, this simple
action reduces the chance of hydrogen being around for sparks to ignite!
High Power RF:
At these powers RF leakage from loose PL259, high Filter & Aerial voltages are
dangerous! Double checking connectors & everything is SAFE before keying up, &
testing is essential. Otherwise you will soon learn about deep RF burns & gain
"Respect for the RF" the hard way!
RF Chokes:
Wind coax or balanced aerial leads to make "RF chokes" near shack end, to help
keep shack RF fields & RF lead currents down!
I N U S E
Running it /P for 8 days at a summer camp on HF pile ups, I did find a 24V fan
(quiet on 12V) was useful to cool the front part of the PA & occasionally my
25A linear PSU floating a battery. The rig & PSU were floated on another
battery. This did allow a much smaller petrol generator (650W 2 stoke) to be
used rather than a 2.3kW 4 stroke & QRO Valve Amp. (That was used for cold
night to keep the operating tent warm!)
See my Tech buls on "AF 2 Tone Test Osc Design", "Transistor PA Biasing", "Lead
Acid Batteries", "2nd Car Battery for /M & /P", "Rig DC Power & RF Hazards",
"Using 2 HF PAs" & "NORTHERN 650W 2 Stroke Genny".
Why Don't U send an interesting bul?
73 de John, G8MNY @ GB7CIP
Read previous mail | Read next mail
| |