OpenBCM V1.07b12 (Linux)

Packet Radio Mailbox

IW8PGT

[Mendicino(CS)-Italy]

 Login: GUEST





  
G8MNY  > TECH     15.08.16 18:05l 210 Lines 10349 Bytes #999 (0) @ WW
BID : 14688_GB7CIP
Read: GUEST
Subj: T500M 12V 500W HF Linear 2/2
Path: IW8PGT<IZ3LSV<IV3SCP<SR1BSZ<GB7CIP
Sent: 160815/0952Z @:GB7CIP.#32.GBR.EURO #:14688 [Caterham Surrey GBR]
From: G8MNY@GB7CIP.#32.GBR.EURO
To  : TECH@WW

By G8MNY                                 (Updated Jul 16)
(8 Bit ASCII graphics use code page 437 or 850, Terminal Font)

5/ BIAS
 R4 turns on Q2, when Q2 emmiter > 0.6V, Q1 turns on reducing Q2 base drive.
 Value of R3 is used to see the exact bias voltage, R4 & supply voltage also
 affect the bias to slightly. R5 limits the max current, D2 is a safety
 feature. Q1 & D2 are thermally connected to the PA on the same heatsink.

 PTT Switched
 +12V ÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
          ³             R5I                        This circuit was slightly
          R4     Added  5R                         unstable when scoping
         270      47n  10W   Scope for             R5 (5R) so I added a small
          ³       Ú´Ã---³ <--1MHz oscillation!     capacitor base to collector
          ³       |   ³/c                          on the large MPN to stop it.
          ÃÄÄÄÄÄÂÄÄÄÄÄ´  TIP33A
          ³ C6 === Q2 ³\e NPN       +690mV @ 2.2A
          ³ 2u2_³_      ÃÄÄÄÄÂÄÄÄÂÄ> via RFC to
          ³    ///      ³    ³   ³   Amp input
      NPN c\³           ³    ³   ³   transformers
     TIP29  ÃÄÄÄÄÄÄÄÄÄÄÄ´    ³   ³
          e/³ Q1       _³_  +³  2R2
  PA BIAS ³            \_/  ===  ³                 Components were not the
  QuescentÀ>5R       D2 ³  C7³   ³                 same as original diagram!
  Set 1-2A  R3          ³ 2u2³   ³
     ÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÁÄÄÄÁÄÄ

6/ ALC
 There is no ALC system on this AMP, & I am used to old Valve amp with a power
 ALC control. With PA ALC, the driver power is automatically set to the wanted
 level, & with the PA turned off your back to full bare foot power. So I
 designed this ALC circuit for this PA...

 +12V Tx>ÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
          R4       5R               ³
         270  PA  10W               ³
          ÀÄ>Bias<ÄÁÄÄ270ÄÄ¿       15K
            Circuit        ³ 2n2    ³
                           ÃÄĴÿ   ³     Front panel
                       PNP e\³  ³  10K    50W-600W
                    2N3703   ÃÄÄÁÄ>POWER  ALC Control
                    on POT  /³     POT
                     ÚÄÄÄÄÄ´       _³_
                    4K7   |³|      ///
                     ³     ³Fbead        Mounted on 12 way JONES plug
 Input            -ve³     ³         Fbeed  
 RF on >Ä1kÄÄ´<ÃÄ´<ÃÄ´     ÀÄÄÄÄÄÄÄÄÄÄÄÄððij<ÃÄÂÄÄÄÄÂÄÄÄ>ALC to rig
 Drive       1N4148  ³     long wire     1N4148³   100   0V to -10V
 Atten              ===                        ³    ³ -
                  2n2³                        4K7  === 4u7
                    _³_                       _³_  _³_+20V
                    ///                       ///  ///

 The -ve supply for the ALC is derived from the RF on the attenuator after the
 DRIVE relay. The -ve after the 4K7 it is normally clamped to +ve by the PNP.
 But when the PA bias current (limited to 2.2A by 10W 5R) reaching the 8 PA
 bases, gives a voltage lower than that set on POWER POT & the clamping stops,
 letting the -ve through. The series diode & 4K7 load mounted on the rear Jones
 socket ensures only -ve voltages are given to the exciter to reduce power
 drive. The 4u7 & 100R give a sensiable ALC time constant action.

 MY CLEVER ALC DESIGN!
 My ALC works very well compaired with manually keeping the drive power always
 low enough at all times so the PA never clips. By using bias current demand, 
 it is quite effective at keeping the PA operating in it's linear region by
 reducing the driver power. This is because the large amount of NFB used around
 in this commecial PA, that increases the PA's drive power as the amp gain
 falls off at full power. The sudden increase in bias current occures before
 the PA actually clips. So a usefull & accurate maximum drive threshold point
 that caters for any SWR, supply voltage, or Rig power setting etc!

7/ INPUT SWR
 The input frequency compensating attenuator circuit was not as the diagram &
 the SWR was not all that good, dispite all components testing out OK.

 SWR   Original Input Match             SWR   Improved Input Match @ 50W
 1.7´           .ú'ú.                   1.7´
 1.5´'''''''''''     'ú..               1.5´
 1.3´                    ''''úúúúú      1.3´          ..ú''ú.        ..ú'
 1.1´                                   1.1´''''''''''       ''''''''
    ÀÂÄÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄ        ÀÂÄÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄÄÂÄ
    1.8 3.5 5  7 10 14 18 21 24 28MHz      1.8 3.5 5  7 10 14 18 21 24 28MHz

    L1               39p    25W           L1                   39p    25W
 >ÄÄ())ÄÄÄÂÄÄÄÂÄÄÄÄÂÄ´ÃÄÄÂÄ>Drive       >Ä())ÄÂÄÄÄÄÄÄÂÄÄÂÄÄÄÄÂÄ´ÃÄÄÂÄ>Drive
40W     L2(  ===   ÃÄ220Ä´  Splitter  40W     ³    L2( ===   ÃÄ200Ä´  Splitter
          (   ³56p ÃÄ220Ä´                   ===     (  ³56p ÃÄ200Ä´
     ÚÄÄÄÂÁÄÄÂÁÄÄ¿ ÀÄ220Ä´                100p³   ÚÄÄÁÂÄÁÄ¿  ÃÄ200Ä´
    200 200 200 200     220                   ³  220 220 220 ÀÄ200ÄÙ
    _³_ _³_ _³_ _³_     _³_                  _³_ _³_ _³_ _³_
         Actual Circuit                          New Circuit

 There was a bump @ 10MHz & that is from the drive splitter load. L2 & 56pF
 disconnects the added load, as the 39pF bypasses the series attenuator Rs on
 the higher frequencies, to flatten the amp gain. The original diagram did not
 have 220R to ground, but had 20pF to ground @ the L1/2 junction. I found
 making this a 100pF (Tx grade) was better on 10m band & changing the load Rs
 around gave a better lower band input match.

 Flat gain is less important than driver rig linearity, due to poor load. The
 input SWR will change with drive level (higher Z at more power), as the RF NFB
 level reduces, correcting each amplifier gain, as each amplifier works harder.

T E S T I N G
At a club meeting, 2 of these amplifiers (modified & unmodified) were tested
with 2 tone linearity test & with a spectrum analyser for harmonics. Both amps
performed well to the sudden (like AF Amps) 600W clipping level. This due to
the effective NFB keeping good lineararity until it fails. But even brief full
carrier testing on lower bands did provide smoke from the underrated input
attenuator!

The 2 tone test showed very good linearity to 400W PEP, so I think the quoted
IMD looks right.

The harmonics tests on a spectrum analyser showed the need to have the "right"
low pass filter selected, as these un-tuned broadband amps are quite harmonic
rich otherwise!

 dB        Topbands with            dB        Topband with
  0_³  f1  15-30MHz Filter           0_³  f1  2-3MHz Filter
-10_³  ³                           -10_³  ³
-20_³  ³    f3                     -20_³  ³
-30_³  ³ f2  ³                     -30_³  ³
-40_³  ³  ³  ³ f4 f5               -40_³  ³ f2
-50_³  ³  ³  ³  ³  ³ f6            -50_³  ³  ³
-60_³  ³  ³  ³  ³  ³  ³ f7         -60_³  ³  ³ f3
    ÀÄÄÁÄÄÁÄÄÁÄÄÁÄÄÁÄÄÁÄÄÁÄ            ÀÄÄÁÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÄ

On Topband the 2-3MHz LPF is not really that good for the 2nd harmonic! Higher
bands fared better with filter performance. Of course no problem at all after a
good ATU.

On actual testing into aerial via a high Q QRO ATU, I found it was possable to
get slight PA parasitic oscillation (of the RF envelope) at very high power. It
never did this into my dummy load or an actual aerial on Spectrum Analyser! But
with the final tweak to the input attenuator, it tested OK across all bands,
with ATU tuning over a range of SWRs. So sudden high SWR in a tuner may
indicate a Tx "parasitic" as well as aerial "arcing" failure!

H A Z A R D S
Current Loops:
Although 12V is fairly safe (compared to 230V or 3kV), with high currents
anything metal is a hazard! This includes the PL259 plug & mains earth wiring!
I put heat shrink sleeving on 259 plug rig lead near the +12V terminal. Care
must be taken to ensure the "75A" does not flow around unsuitable leads in
parallel e.g. Mains PSU earths!

Battery leads:
With single battery, use short "starter gauge" cables, with soldered on copper
tabs/lugs, made from thin Copper sheet 0.5mm, wound on a 8mm drill 1.5 turns.
Then flattern one end, solder to cable (on cooker). 
            __________ heat shrink
  Drilled   ___  _____________
  Hole ____/   ³~STARTER CABLE
       ~~~~ÄÄÄÄÙ~ÄÄÄÄÄÄÄÄÄÄÄÄÄ
          ~~~~~~~~~~~~
Clean up & apply heat shrink sleeve or tape. Drill hole for PA & battery
connections. Mark up + & - with coloured tape. Apply water repellent grease to
tabs, bolt tread, washers etc.

Lead Acid Batteries:
Other than high current & fire hazard of melted leads, batteries have Sulphuric
Acid that always seems to get out & damage cloths etc, you can replace clothes,
but eyes are something else! Take care!

H2 Anti Explosion Tip:
Always "blow" at the battery, before making/unmaking connections, this simple
action reduces the chance of hydrogen being around for sparks to ignite!

High Power RF:
At these powers RF leakage from loose PL259, high Filter & Aerial voltages are
dangerous! Double checking connectors & everything is SAFE before keying up, &
testing is essential. Otherwise you will soon learn about deep RF burns & gain
"Respect for the RF" the hard way!

RF Chokes:
Wind coax or balanced aerial leads to make "RF chokes" near shack end, this
helps keep shack RF fields & RF lead currents down!

I N  U S E
Running it /P for 8 days at a summer camp on HF with autocaller & pleanty of
pile ups, I did find a fan system was useful, to cool the front part of the PA
(used a small Germanium transistor to sence temp & a high gain Tip Silicon to
operate fans in series.)

A 25A linear PSU floating batteries worked well. The rig was floated on another
battery & PSU. This did allow a much smaller petrol generator (650W 2 stoke)
to be used rather than a 2.3kW 4 stroke & QRO Valve Amp. (That was used for
cold night to keep the operating tent warm!)

Reports were all pritty fantastic, good clear comms quality AF from the old
IC735 with its hard AF clipper mic processor, & a strong signal. A local looked
at the remote Hack Green SDR website radio, only to comment "my /P station much
was stronger than his & narrower!"


See my Tech buls on "AF 2 Tone Test Osc Design", "Transistor PA Biasing", "Lead
Acid Batteries", "Variable Speed Thermal Fan", "12V 75A Del SMPSU Mods", "2nd
Car Battery for /M & /P", "Rig DC Power & RF Hazards", "Using 2 HF PAs" &
"NORTHERN 650W 2 Stroke Genny".


Why Don't U send an interesting bul?

73 de John, G8MNY @ GB7CIP


Read previous mail | Read next mail


 11.05.2024 07:24:29lGo back Go up